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Abstract 

In this article represented are the calculations of initial plastic strips-zones, developed from the 
corner points of elastoplastic body, which are stress concentrators. With the aim of conducting of 
these calculations there has been made a transition from the problem on plastic zones to the problems 
of the theory of elasticity for the wedge-shaped body with the rupture displacement line at the vertex. 
The exact solutions of the above-mentioned problems are constructed by Wiener-Hopf method. Based 
on these solutions the lengths of plastic strips and the directions of their development are defined. The 
results of symmetric cases of the crack end, which is on the media-separating boundary, and the 
corner point of the hole brings us to a conclusion that the process of development of the initial plastic 
zone has two stages. At the first stage two side plastic strips are developed from the corner point, and 
at the second stage one more additional strip, which is considerably smaller than the side ones. In the 
case of a hole at the second stage before the appearance of the third strip, the side plastic strips deviate 
from their primary direction of development, thus, leading to the angle increase in between them. 
 

Introduction 

An approach to the investigation of corner points of elastoplastic body from the point of view of 
initial development of plastic zones near them under the conditions of plane problem is proposed. 
Following the widely-used and confirmed by numerous experiments localization hypothesis, the 
initial plastic zones are modeled by narrow rectilinear plastic strips, emerging from corner points. 
These strips are plastic slip lines or plastic Dugdale’s lines. 

The essence of the approach proposed is in the reduction of the mentioned question, concerning to 
the corner point under investigation, to the static problem of the theory of elasticity for wedge-shaped 
region with rectilinear cut of finite length, emerging from corner point, and nonclassical condition at 
infinity, which allows to take into account the influence of external field; in construction by Wiener-
Hopf method an exact solution of this problem and in determination on its base the length and the 
direction of initial development of the plastic strip. 

The approach proposed is used for calculation of initial plastic zones near the corner point of the 
hole, of the rigid inclusion, of the media-separating boundary, of the intersection of slip lines under 
the conditions of symmetrical problem  in limits of the model with two slip lines; near the end of the 
crack in limits of “trident” model; near the corner point of a rigid punch, impressed into an 
elastoplastic body, in limits of a model with only slip line; near the end of the crack at the media-
separating boundary in limits of a model with only slip line and a model with only Dugdale’s line. Đn 
perspective using the given approach, whole classes of new problems of initial plastic strips, emerging 
from corner points, can be investigated. 

Here are some examples of problem solution of the above-mentioned type. 
Under calculations of the initial plastic zones at the ends of cracks and other corner points – 

concentrators of stresses in the elastoplastic body under the conditions of plane strain in the limits of 
models with the rupture displacement lines the most spread model is with two slip lines [1-4]. The 
only admitted is the rupture of tangential displacement, and the tangential stress equals to shear yield 
point. However, the results of some theoretical and experimental research work, conducted recently, 
prove the evidence of the fact that the process of the initial development of the plastic zone near the 
corner point – the concentrator of stresses in many cases the “trident” model describes more exactly 
[5,6]. According to the model, emerging are the two slip lines from the corner point and one more 
rupture displacement line of the considerably shorter length. 

Below the plane symmetric problems on the calculations within the limits of the “trident” model 
of the plastic zone at the end of the crack, that is on the interface of two different homogeneous 
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isotropic elastoplastic media with Young’s modulus E1,2 and Poisson’s ratio 2,1ν , under the condition 

that the binding material is more plastic than the materials of contacting bodies, and also at the corner 
point of the hole in homogeneous isotropic elastoplastic body are considered. 

 

Formulation of the problems 

Plastic strips at the end of the crack that is on the media-separating boundary 
In this case we come down to a plane static symmetrical problem of the theory of elasticity for the 

piece-homogeneous isotropic plane with the media-separating boundary in the angle 2α  form, from 
the corner point of which emerge semi-infinite crack, two slip lines which are on the interface and line 
D of the rupture of displacement of considerably shorter length that is inside of the angle (Figure1). 

Fig. 1. Rupture displacement lines at the end of the crack in the piece-homogeneous plane 

On line D the normal stress equals to the given constant of the material σ. At infinity the 
asymptotic is realized, represented by itself the solution of the analogous problem without slip lines 
and line D, which corresponds to the smallest in the interval ]-1;0[ root λ0(α ,ν1,ν2, E1/E2) of its 
characteristically equation. This solution contains arbitrary constant C, that is considered to be given. 
Constant C characterizes the intensity of the external field and must be determined from the solution 
of the external problem. 

Since the length d of line D is considerably shorter than the length l of slip lines, the formulated 
problem of the theory of elasticity (the problem in the whole) can be divided into external and internal 
problems. The external problem is the problem analogous to the problem in the whole without line D. 
The internal problem is the problem analogous to the problem in the whole with semi-infinite slip 
lines. At infinity in the internal problem the principal terms of the expansion of stresses in asymptotic 
series coincide with principal terms of the expansion of stresses in asymptotic series in the external 
problem near the end of the crack. 

The boundary conditions of the external problem are as follows: 
00;0 ==−===−= θrθrθθ u,τα,θτσα,πθ  

000 ==== θrθθ u,τσ,θ                                                                                                       (1) 

0,,0;,,0 =>==<= rsr ulrlr θττθ θ                                                                                  (2) 

(- ;απθα −≤≤  a  is the jump of value a; sτ  is shear yield point). 

The solution of the formulated problem with boundary conditions (1), (2) are the sum of solutions of 
the two problems. The first differs, that instead of the first condition (2) we have  

00 λ
srθ Cgrττl,r,θ −=<=                                                                                                           (3) 

(g (α ,ν1,ν2, E1/E2) is the known function), whereas at infinity the stresses decrease as o(1/r). 
The second problem is the analogous problem without slip lines, the solution of that is known. 
Using Mellin’s integral transform and taking into account the second condition (2) and condition 

(3), the first problem is reduced to the following Wiener-Hopf functional equation [7, 8]: 
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( 2,1ε  are sufficiently small positive numbers). 

The solution of the equation (4) is as follows [8]  
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(Г(z) is gamma function). From (5) we get the asymptotic 
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(kII is the stress intensity factor at the end of slip line). Applying Abel’s type theorem [7] we find the 
asymptotics 
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The length of the slip line is determined from the condition of continuity of stresses at its end. 
Equating to zero the right side of (8), we come to the equation for determination of slip line length. 

The internal problem is reduced to the following Wiener-Hopf functional equation: 
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[0;1])/,,,(( 21211 −∈EEνναλ  is the exponent of singularity of stresses at the corner point of the 

external problem; F )/,,,( 2121 EEννα  is the known function). 

Based on the solution of the equation (9) the line D length is defined. 
 

Plastic strips at the corner point of the hole 

In this case we come down to the plane static symmetrical problem of the theory of elasticity for 
homogeneous isotropic wedge with stress-free sides and the angle bigger than π, from the vertex of 
which emerge two straight slip lines and the line of the rupture of normal displacement is considerably 
shorter in length (Figure2). 

Fig. 2. Rupture displacement lines at the wedge vertex 
 

The boundary conditions of the problem are as follows: 
0,0,,0;0,,,0 ==>===<= θθθθ τθτσσθ udrdr rr  

srr ulr τττσβαθ θθθθ ====<−= ,0,0,,  
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The external and the internal problems are reduced to Wiener-Hopf equations with the 
coefficients 
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Based on the solutions of the given equations the lengths of rupture displacement lines and the 
directions of their development are determined. At this, the direction of slip line development is 
defined on the condition of maximum of sum of lengths of rupture displacement lines. 
 

Results 

These are the following formulas that serve to define the lengths of plastic strips emerging from 
the end of the crack, reaching the media-separating boundary: 
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Some values of 2110 ,,, FFλλ  are given in the Table 1. 
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Table 1. Some values of functions in the formulas for the lengths of  
plastic strips at the end of the crack in the piece-homogeneous body 

 
E1/E2 

ν1 ν2  
α

o 

10 30 50 70 90 110 130 150 
 
 
 
 

0,5 

0,25 0,25 

λ0 -0.488 -0,464 -0,446 -0,432 -0,430 -0,448 -0,476 -0,495 
λ1 -0.480 -0.438 -0.375 -0.260 0 -0.306 -0.441 -0.489 
F1 0.072 0.739 3.365 6.176 3.507 0.525 0.023 1.56⋅10-4 

F2 134.14 313.37 890.29 9602.1  219.64 3.71 0.12 

0,33 0,33 

λ0 -0.491 -0.474 -0.458 -0.443 -0.437 -0.450 -0.477 -0.495 
λ1 -0.480 -0.438 -0.375 -0.260 0 -0.306 -0.441 -0.489 
F1 0.144 1.2782 4.096 6.034 3.158 0.457 0.019 1.27⋅10-4 
F2 109.02 255.4 712.16 7700.8  184.86 3.05 0.097 

 
 
 
 

2 

0,25 0,25 

λ0 -0.515 -0,545 -0,571 -0,583 -0,576 -0,554 -0,529 -0,509 
λ1 -0.434 -0.351 -0.283 -0.197 0 -0.313 -0.451 -0.493 
F1 22.782 77.653 59.236 25.802 7.478 1.295 0.099 1.33⋅10-4 
F2 5136.8 14587 32404 6.08⋅105  143.16 3.13 0.12 

0,33 0,33 

λ0 -0.512 -0.539 -0.565 -0.579 -0.574 -0.553 -0.529 -0.509 
λ1 -0.434 -0.351 -0.283 -0.197 0 -0.313 -0.451 -0.493 
F1 16.424 59.449 46.31 19.89 5.631 0.961 0.074 1.03⋅10-3 
F2 4269.3 13045.9 29073.2 5.23⋅105  106.33 2.35 0.093 

 

Formulas (10) set up the law of development of the initial plastic zone near the considerate corner 
point. 

Established is the following two stage mechanism of the process of development of the initial 
plastic zone near the corner point of the hole. At the first stage appear two plastic strips emerging 
from the corner point and forming the angle with body boundary which increases with the angle 
increasein between the boundary lines. The strips grow with the loading increase. At the second stage 
the side plastic strips deviate from the initial direction of development, which is leading to the 
increase of the angle in between them, and the third strip appears, developing from the corner point, 
which is considerably smaller than the side ones. The angle between the side plastic strip and the body 
boundary increases with the increase of the angle between the boundary lines. The bigger is σ ,  the 
bigger is the length of the side strips and the smaller is the length of the third strip, and the angle 
perturbation between the side strip and the boundary, created by the third strip. With the loading 
increase, all the three strips grow. The initial stage of the development process of the plastic zone at 
the corner point ends when the length of the side plastic strips strops being of considerably smaller 
than the body sizes. 

With the above-described method could be calculations done within the limits of the “trident” 
model of the initial plastic zones near different types of other corner points of sophisticated nature in 
elastoplastic body. 
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